If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+12x-78=0
a = 2; b = 12; c = -78;
Δ = b2-4ac
Δ = 122-4·2·(-78)
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-16\sqrt{3}}{2*2}=\frac{-12-16\sqrt{3}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+16\sqrt{3}}{2*2}=\frac{-12+16\sqrt{3}}{4} $
| (5b+8)(b+6)=0 | | -58n+58n=18 | | 2x^2-16x-34=0 | | -5.8n+5.8n=1.8 | | -2x+4=72 | | -x+2=110 | | (20+2x)(15+2x)-600=0 | | (3x-8)=115 | | (20+2x)(15+2x)-2(15*20)=0 | | -x+1=115 | | 4(3x+5)-3(2x+4)=26 | | 5(5x-6)-3x+8=44 | | x^2-x-276=0 | | 2(-6x-3)=18-8x | | .25x-3=9 | | 1000=x+.7x | | 8x+19=96 | | (5x+11)+(x+31)=180 | | 2(q-5)=2q-11 | | (2x-24)+(4x+6)=180 | | 96+x=250 | | 7=9/d | | (4x+1)^2-8=0 | | 48^3=147n | | Y-18+6x-4=180 | | 4y+20=60 | | X+10+x=38 | | 4a-64a=0 | | 20x+11)+(9x-5)=180 | | (20x+11)+(9x-5)=189 | | 3(x+4)+4x=-3 | | (12x+2)+10=90 |